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Quark-Gluon Plasma (QGP)

Basic degree of freedom: quark, gluon
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Introduction

Motivation: Clarifying quark spectrum in QGP phase.
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•How many excitation modes?

•How are the dispersion relation, damping rate, strength?

In general, particle picture in medium is complicated.

(Since there is no Lorentz symmetry, the Lorentz-noncovariant dispersion relation is allowed.)

(Emergence of collective excitation. cf: plasmon, phonon in condensed matter system)

(ω2=p2+m2)



This is nontrivial task;
Free-particle picture is generally invalid even at weak coupling (g <<1).
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Yukawa model, QED/QCD

Energy hierarchy

•many-body effect becomes non-
negligible when (energy) ~ gT, gµ

Because (inter-particle 
distance)-1

(Debye screening 
length)-1,

plasma oscillation 
frequency

(mean free path)-1

hard
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energy hierarchy at T, µ >>ΛQCD, m
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This is nontrivial task;
Free-particle picture is generally invalid even at weak coupling (g <<1).
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Yukawa model, QED/QCD

Energy hierarchy

•many-body effect becomes non-
negligible when (energy) ~ gT, gµ

•Furthermore, interaction effect 
such as collision becomes non-
negligible when (energy) ~ g2T, g2µ
(mesoscopic scale)

Because

Ultrasoft scale is not well investigated even at weak coupling (g <<1).

(inter-particle 
distance)-1

(Debye screening 
length)-1,

plasma oscillation 
frequency

(mean free path)-1

hard

soft
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Therefore the interaction effect is suppressed by 
g, and thus the free-particle picture is valid.

E

Single particle 
excitation

fermionicbosonic

Single particle 
excitation

dispersion relation in the free limit： ω=|p|
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Hard Thermal Loop (HTL) approximation

E. Braaten and R. D. Pisarski, Nucl. Phys. B 337, 569 (1990)
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•valid when p~gT, gµ.

•1-loop diagram

Σ(p)=

Fermion self-energy

Boson self-energy

Πµν(p)=

Soft scale (p~gT, gµ)



Result
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H. A. Weldon, PRD 26, 1394 (1982), 2789 (1982)

E
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Collective modes appear.

Large medium effect



Boltzmann eq.:

Vlasov equation
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e.g. : fermion distribution, QED

collision termdrift term force term

(v・∂X +g(E(X)+v×B(X))・∂k)n(X, k)=C[n]
n(X, k): distribution function of fermion
v =(1, k/ |k|): 4-velocity, E(X), B(X): field strength



The collision term in Boltzmann eq. is neglected.

Vlasov equation
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∂X =O(gT) >> C[n]=O(g2T)

Vlasov Eq.: (v・∂X +g(E(X)+v×B(X))・∂k)n(X, k)=C[n]

J. P. Blaizot and E. Iancu, PRL 70, 3376 (1993)

By contrast, the collision term is non-
negligible at ultrasoft region (∂X=O(g2T, g2µ))!

Self-energies calculated from Vlasov eq. coincides with 
that from HTL approximation.



Reflecting this fact, the HTL approximation is not applicable in 
ultrasoft region( p ≲ g2T, g2µ ). 
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reorganizing perturbative 
expansion is necessary.

p→0 limit can not be taken 
(pinch singularity)
Pinch singularity in the computation of the transport coefficient: 
S. Jeon, PRD 52, 3591 (1995)
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I. ULTRASOFT FERMION MODE

Gm(p) =
1

/p−mf
(1.1)

Dµν
m (p) =

Pµν
T (p)

p2 −m2
b

(1.2)

Gm(p) =
/p

p2 −m2
f + 2ip0ζf

(1.3)

Dµν
m (p) =

Pµν
T (p)

p2 −m2
b + 2ip0ζb

(1.4)

Dm(p) =
1

p2 −m2
b + 2ip0ζb

(1.5)

(1.6)

G(p) =
1

/p
(1.7)

Dµν(p) =
gµν − pµpν/p2

p2
(1.8)

G(p) =
/p

p2
(1.9)

D(p) =
1

p2
(1.10)

g2
/k

k2(k − p)2
= g2

(

1

(k − p)2
−

1

k2

)

/k

2p · k − p2
p→0
−−−→ ∞ (1.11)

g2
/k

k2(k − p)2
= g2

(

1

(k − p)2
−

1

k2

)

/k

2p · k − p2
p→0
−−−→ ∞ (1.12)

g2
∫

d4k

(2π)4
2πθ(k0)δ(k2)(N(k0) + n(k0))

/k

2p · k − p2
p→0
−−−→ ∞ (1.13)

g2
∫

d4k

(2π)4
/k

k2(k − p)2
= g2

∫

d4k

(2π)4

(

1

(k − p)2
−

1

k2

)

/k

2p · k − p2
p→0
−−−→ ∞ (1.14)

(1.15)

g2

p · k
(1.16)

(

g2

p · k

)2

(1.17)

g2

2p · k + δm2 + 2iζk0
= O(g0) (1.18)

(

g2

2p · k + δm2 + 2iζk0

)2

= O(g0) (1.19)

g2
(

1

(k − p)2
−

1

k2

)

/k

2p · k+δm2 + 2iζk0
p→0
−−−→ O(g0) (1.20)

V. V. Lebedev and A. V. Smilga, Annals Phys. 202, 229 (1990)

Ultrasoft scale (p~g2T, g2µ)
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Resummed perturbation showed the existence of a 
novel excitation in ultrasoft ( p<<g2T ) region.

normal fermion
(HTL result) 

plasmino (HTL result)

new excitation appears! 0
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D. S., arXiv: 1303.2684 [hep-ph]
Y. Hidaka, D. S., and T. Kunihiro, NPA 876, 93 (2012)

Ultrasoft Fermion Mode at µ=0

Suggestions:
Resummed perturbation: V. V. Lebedev and A. V. Smilga, Annals Phys. 202, 
229 (1990). 
Schwinger-Dyson eq.: M. Harada and Y. Nemoto, PRD 78, 014004 (2008), 
S. X. Qin, L. Chang, Y. X. Liu, and C. D. Roberts, PRD 84, 014017 (2011).
NJL model: M. Kitazawa, T. Kunihiro and Y. Nemoto, PLB 633, 269 (2006).



Excitations at µ=0
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hard

soft

ultrasoft

T Single particle 
excitation
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Ultrasoft Fermion Mode at Finite µ
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T

µ

Confined Phase Color Superconducting Phase

QGP Phase

We analyzed this region.
（High-T, µ=0）

How about in other region？



Resummed Perturbation (T=0, finite-µ)
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resum the masses due to density effect (mf, mb=O(gµ)) and 
the damping rates (ζf , ζb=O(g4µ)) mf, ζf

mb, ζb

(Yukawa model, for simplicity.)

δm2=m2b-m2f, ζ= ζf +ζb

1

Gm(p) =
1

/p−mf
(0.1)

Dµν
m (p) =

Pµν
T (p)

p2 −m2
b

(0.2)

Gm(p) =
/p

p2 −m2
f + 2ip0ζf

(0.3)

Dµν
m (p) =

Pµν
T (p)

p2 −m2
b + 2ip0ζb

(0.4)

Dm(p) =
1

p2 −m2
b + 2ip0ζb

(0.5)

(0.6)

G(p) =
1

/p
(0.7)

Dµν(p) =
gµν − pµpν/p2

p2
(0.8)

G(p) =
/p

p2
(0.9)

D(p) =
1

p2
(0.10)

g2
/k

k2(k − p)2
= g2

(

1

(k − p)2
−

1

k2

)

/k

2p · k − p2
p→0
−−−→ ∞ (0.11)

g2
/k

k2(k − p)2
= g2

(

1

(k − p)2
−

1

k2

)

/k

2p · k − p2
p→0
−−−→ ∞ (0.12)

g2

p · k
(0.13)

(

g2

p · k

)2

(0.14)

g2

2p · k + δm2 + 2iζk0
= O(g0) (0.15)

(

g2

2p · k + δm2 + 2iζk0

)2

= O(g0) (0.16)

g2
(

1

(k − p)2
−

1

k2

)

/k

2p · k+δm2 + 2iζk0
p→0
−−−→ O(g0) (0.17)

g2
/k

2p · k+δm2 + 2iζk0
p→0
−−−→ O(g0) (0.18)

p2 −Π(p) =0 (0.19)

(/p− Σ(p))2 =0 (0.20)

→Pinch singularity is regularized.



Result
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Dispersion 
relation Reω＝

This term breaks the expansion condition 
( p<<g2µ ), so the result is not reliable.

The mode does not exist in the corresponding 
region to the high-T case.
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K(k,X) =2πδ(k2)(θ(k0)Λ(k, X) + θ(−k0)Λ(−k, X)) (4.21)

=
2π

2|k|
(δ(k0 − |k|)Λ(k, X) + δ(k0 + |k|)Λ(−k, X)), (4.22)

Kaµ(k,X) ≡ta2πδ(k2)(θ(k0)Λµ
+(k, X) + θ(−k0)Λµ

−(−k, X)) (4.23)

Kaµ(k,X) ≡2πδ(k2)(θ(k0)Λaµ
+ (k, X) + θ(−k0)Λaµ

− (−k, X)) (4.24)

Kaµ(k,X) ≡2πδ(k2)ta(θ(k0)Λµ
+(k, X) + θ(−k0)Λµ

−(−k, X)) (4.25)

A. higher point function

(2ik · ∂X + δm2 + 2iζfk
0)δ /K(k,X) = −2gk ·Aa(X)ta /K(k,X)|A=0

+ g2Cfγ
i/kP ij(k)(N(k0) + n(k0))ρ0(k)

∫

d4k′

(2π)4
γνS(k + k′)γjδKν(k

′, X).
(4.26)

(2iv · ∂X + δm2/|k|+ 2iζ)δ/Λ±(k,X)− 2gk · Aa(X)ta/Λ±(k,X)|A=0 (4.27)

= −g2/v(N(|k|) + n(|k|))CfγiP
ij
T (v)

∑

s=±

∫

d3k′

(2π)3
1

2|k′|

svαγj ± v′jγ
α

|k||k′|v · v′
δΛsα(k

′, X) (4.28)

Λµ
s (k,X) = Λµ

s (k,X)|A=0 + δΛµ
s (k,X) (4.29)

V. FINITE µ

g2
∫

d4k

(2π)4
2πθ(k0)δ(k2)n(k0)

/k

2p · k − p2
p→0
−−−→ ∞ (5.1)

g2µ

36π2
(5.2)

−
p

3
+

g2µ

36π2
(5.3)

−
p

3
+
g2µ

4π2
(5.4)



Argument based on dynamics
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Process contributing to Σ(p)：
4

the same cancellation also happens in the case that the
boson comes from the heat bath. From this discussion
we see that δm2 is quite essential for the existence of the
ultrasoft fermion mode. On the other hand, in the case
of T = 0 and µ != 0, there is no anti-fermion in the heat
bath. Therefore, the cancellation does not occur and thus
the fermion self-energy becomes finite even at p̃ = 0, as
shown in Eq. (2.6).

We also note that the breaking of the chiral symmetry
also prevents the ultrasoft fermion mode from existing.
In fact, in the case that the fermion has finite bare mass
(m̃f ), the mode ceases to exist [11]. This fact is also
consistent with our discussion on the symmetry which
guarantees the existence of the ultrasoft fermion mode.
The persistency of the ultrasoft fermion mode against
the bare fermion mass is also discussed in Ref. [7]. On
the other hand, the finiteness of the bare boson mass
(m̃b) does not break the chiral symmetry, so the ultrasoft
fermion mode persists in that case [10].

We note that the similarity between the ultrasoft
fermion mode and “goldstino” [12], which is a Nambu-
Goldstone mode and related to the spontaneous sym-
metry breaking of the supersymmetry (SUSY), was dis-
cussed in Ref. [7], though the temperature region is dif-
ferent: We are analyzing the case the high temperature
case such that gT " m, where m is the bare mass of
the particles, while the analysis is performed in the case
of gT # m in the supersymmetric model [12]. Besides,
there is another difference that the Lagrangian of the
model does not have SUSY, thus the damping rate of
the ultrasoft fermion mode in the gauge theory is finite
and of order g2T ln(1/g) [7, 8]. Reflecting the fact that
SUSY is spontaneously broken at finite temperature, the
asymptotic thermal masses of the fermion and the boson
are different, so δm2 is finite in the supersymmetric sys-
tem [12]. This fact plays the essential role to generate
the goldstino, in the similar way to that in our discus-
sion in this section. The value of the velocity v = 1/3 of
the goldstino, also has the explanation from the point of
view of SUSY: The goldstino is the superpartner of the
phonon, so the velocity can be written in terms of the
thermodynamic quantity v = P/E (E: energy density,
P : pressure), which is 1/3 in T " m case [12].

However, there is one difference between the ultrasoft
fermion mode and the goldstino: The existence of the
goldstino is protected by SUSY, so the mode persists re-
gardless of the value of m. It can be checked by seeing
that ΣR(p = 0) cancels m in the denominator of the
fermion propagator [12]. On the other hand, the ultra-
soft fermion mode ceases to exist in the presence of m̃f as
we wrote before. It can be checked that ΣR(p = 0) does
not cancel m̃f unlike SUSY case [11]. In this sense, the
ultrasoft fermion mode is similar to the goldstino only at
so high temperature that the bare masses of the fermion
and the boson are negligible. Since the discussion re-
mains unchanged if the number of the boson (color) and
the fermion (flavor), it seems that generally the fermion-
boson system at high temperature can be regarded to

FIG. 2. The schematic figure of the process [18] that
contributes to the ultrasoft fermion self-energy. The solid
(dashed) line with black blob is the resummed fermion (boson)
propagator that contains the information on the asymptotic
thermal mass and the damping rate of the fermion (boson).
The ultrasoft fermion is treated as the average field (Ψ), which
is represented with the gray blob.

have SUSY, though the Lagrangian does not have SUSY.

IV. T ! µ "= 0 CASE

In Sec. II, we have seen that there are no ultrasoft
fermion mode in T = 0 and µ != 0 case. Then, the ques-
tion arises that how much chemical potential kills the ul-
trasoft mode. In this section, we analyze the fermion re-
tarded propagator whose momentum is of order or much
less than g2T , in the case of T " µ. The naive expec-
tation is, that the ultrasoft mode vanishes if µ ∼ g2T
because g2T is the smallest scale in the analysis in T != 0
and µ = 0 case [7, 8]. However, we will find that the
mode persists as long as T " µ, which suggests that the
mode persists much more than the naive expectation, in
this section.
We consider the case that T " µ. Thus, the resummed

propagators we use are the same as those in T != 0 and
µ = 0 case [7, 8]:

SR(k) % −
/k

k2 −m2
f + 2iζfk0

, (4.1)

DR(k) % −
1

k2 −m2
b + 2iζbk0

, (4.2)

SS(k) %
(

1

2
− nF (k

0)

)

/k
4ik0ζf (k)

(k2 −m2
f )

2 + 4(k0)2ζ2f (k)
,

(4.3)

DS(k) %
(

1

2
+ nB(k

0)

)

4ik0ζb(k)

(k2 −m2
b)

2 + 4(k0)2ζ2b (k)
,

(4.4)

with nF (k0) ≡ 1/{exp[(k0 − µ)/T ] + 1} and nB(k0) ≡
1/[exp(k0/T )− 1]. Here the asymptotic thermal masses
are the same as those in T != 0 and µ = 0 case [8, 21]:
mf = gT/(2

√
2) and mb = gT/

√
6. The damping rates

of the fermion (ζf ) and the boson (ζb) are of order of
g4T ln g−1 [21]. Here we used the same notations as in
the case of T = 0 and µ != 0 for simplicity. We note that
the generalized kinetic equation that is equivalent to this
resummation scheme is obtained [18].

mf, ζf mb, ζb

ultrasoft fermion

hard anti-fermion hard boson

To satisfy the pole condition (             =0), Σ(p) 
should be small when p=0.

2

g2

p · k
(1.22)

(

g2

p · k

)2

(1.23)

g2

2p · k + δm2 + 2iζk0
= O(g0) (1.24)

(

g2

2p · k + δm2 + 2iζk0

)2

= O(g0) (1.25)

g2
(

1

(k − p)2
−

1

k2

)

/k

2p · k+δm2 + 2iζk0
p→0
−−−→ O(g0) (1.26)

g2
/k

2p · k+δm2 + 2iζk0
p→0
−−−→ O(g0) (1.27)

p2 −Π(p) =0 (1.28)

(/p− Σ(p))2 =0 (1.29)

= (1.30)

Z =
g2

16π2

(

1 +
8δm2

g2T 2

)2

= O(g2) (1.31)

Z =







g2

144π2

g2

16π2

(

4Nf

3 + 13N
6 + 1

2N

)2 (1.32)

=O(g2) (1.33)

g2

144π2
(1.34)

g2
(4 +Nf )2

48π2
(1.35)

Z =
g2

16π2

(

4Nf

3
+

13N

6
+

1

2N

)2

(1.36)

=O(g2) (1.37)

Z =
8(δm2)2

π2g2T 4
=

g2

72π2
= O(g2) (1.38)

D. S. and Y. Hidaka, PRD 85, 116009 (2012)

D. S., arXiv: 1303.2684 [hep-ph]
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The contribution of anti-fermion cancels that of hole in µ=0 case.

Argument based on dynamics
4

the same cancellation also happens in the case that the
boson comes from the heat bath. From this discussion
we see that δm2 is quite essential for the existence of the
ultrasoft fermion mode. On the other hand, in the case
of T = 0 and µ != 0, there is no anti-fermion in the heat
bath. Therefore, the cancellation does not occur and thus
the fermion self-energy becomes finite even at p̃ = 0, as
shown in Eq. (2.6).

We also note that the breaking of the chiral symmetry
also prevents the ultrasoft fermion mode from existing.
In fact, in the case that the fermion has finite bare mass
(m̃f ), the mode ceases to exist [11]. This fact is also
consistent with our discussion on the symmetry which
guarantees the existence of the ultrasoft fermion mode.
The persistency of the ultrasoft fermion mode against
the bare fermion mass is also discussed in Ref. [7]. On
the other hand, the finiteness of the bare boson mass
(m̃b) does not break the chiral symmetry, so the ultrasoft
fermion mode persists in that case [10].

We note that the similarity between the ultrasoft
fermion mode and “goldstino” [12], which is a Nambu-
Goldstone mode and related to the spontaneous sym-
metry breaking of the supersymmetry (SUSY), was dis-
cussed in Ref. [7], though the temperature region is dif-
ferent: We are analyzing the case the high temperature
case such that gT " m, where m is the bare mass of
the particles, while the analysis is performed in the case
of gT # m in the supersymmetric model [12]. Besides,
there is another difference that the Lagrangian of the
model does not have SUSY, thus the damping rate of
the ultrasoft fermion mode in the gauge theory is finite
and of order g2T ln(1/g) [7, 8]. Reflecting the fact that
SUSY is spontaneously broken at finite temperature, the
asymptotic thermal masses of the fermion and the boson
are different, so δm2 is finite in the supersymmetric sys-
tem [12]. This fact plays the essential role to generate
the goldstino, in the similar way to that in our discus-
sion in this section. The value of the velocity v = 1/3 of
the goldstino, also has the explanation from the point of
view of SUSY: The goldstino is the superpartner of the
phonon, so the velocity can be written in terms of the
thermodynamic quantity v = P/E (E: energy density,
P : pressure), which is 1/3 in T " m case [12].

However, there is one difference between the ultrasoft
fermion mode and the goldstino: The existence of the
goldstino is protected by SUSY, so the mode persists re-
gardless of the value of m. It can be checked by seeing
that ΣR(p = 0) cancels m in the denominator of the
fermion propagator [12]. On the other hand, the ultra-
soft fermion mode ceases to exist in the presence of m̃f as
we wrote before. It can be checked that ΣR(p = 0) does
not cancel m̃f unlike SUSY case [11]. In this sense, the
ultrasoft fermion mode is similar to the goldstino only at
so high temperature that the bare masses of the fermion
and the boson are negligible. Since the discussion re-
mains unchanged if the number of the boson (color) and
the fermion (flavor), it seems that generally the fermion-
boson system at high temperature can be regarded to

FIG. 2. The schematic figure of the process [18] that
contributes to the ultrasoft fermion self-energy. The solid
(dashed) line with black blob is the resummed fermion (boson)
propagator that contains the information on the asymptotic
thermal mass and the damping rate of the fermion (boson).
The ultrasoft fermion is treated as the average field (Ψ), which
is represented with the gray blob.

have SUSY, though the Lagrangian does not have SUSY.

IV. T ! µ "= 0 CASE

In Sec. II, we have seen that there are no ultrasoft
fermion mode in T = 0 and µ != 0 case. Then, the ques-
tion arises that how much chemical potential kills the ul-
trasoft mode. In this section, we analyze the fermion re-
tarded propagator whose momentum is of order or much
less than g2T , in the case of T " µ. The naive expec-
tation is, that the ultrasoft mode vanishes if µ ∼ g2T
because g2T is the smallest scale in the analysis in T != 0
and µ = 0 case [7, 8]. However, we will find that the
mode persists as long as T " µ, which suggests that the
mode persists much more than the naive expectation, in
this section.
We consider the case that T " µ. Thus, the resummed

propagators we use are the same as those in T != 0 and
µ = 0 case [7, 8]:

SR(k) % −
/k

k2 −m2
f + 2iζfk0

, (4.1)

DR(k) % −
1

k2 −m2
b + 2iζbk0

, (4.2)

SS(k) %
(

1

2
− nF (k

0)

)

/k
4ik0ζf (k)

(k2 −m2
f )

2 + 4(k0)2ζ2f (k)
,

(4.3)

DS(k) %
(

1

2
+ nB(k

0)

)

4ik0ζb(k)

(k2 −m2
b)

2 + 4(k0)2ζ2b (k)
,

(4.4)

with nF (k0) ≡ 1/{exp[(k0 − µ)/T ] + 1} and nB(k0) ≡
1/[exp(k0/T )− 1]. Here the asymptotic thermal masses
are the same as those in T != 0 and µ = 0 case [8, 21]:
mf = gT/(2

√
2) and mb = gT/

√
6. The damping rates

of the fermion (ζf ) and the boson (ζb) are of order of
g4T ln g−1 [21]. Here we used the same notations as in
the case of T = 0 and µ != 0 for simplicity. We note that
the generalized kinetic equation that is equivalent to this
resummation scheme is obtained [18].

mf, ζf mb, ζb

ultrasoft fermion

hard anti-fermion
hole hard boson

At finite µ, there are no anti-fermion in the heat bath, and Σ(p) 
becomes large.

The pole does not exist.

(Charge Symmetry) 
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Chiral, Charge symmetry

3

Ψ =
1

/p− Σ(p)
η (1.39)

δm2 =











g2T 2

24 (Yukawa)

− g2T 2

12 (QED)

g2T 2
(

Nf

6 + 15N2+1
8N

)

(QCD)

(1.40)

δm2 =

{

− g2T 2

12

g2T 2
(

Nf

6 + 15N2+1
8N

) (1.41)

δm2

g2T 2
=











1
24 (Yukawa)
− 1

12 (QED)
(

Nf

6 + 15N2+1
8N

)

(QCD)
(1.42)

{

1
3
(

4
3Nf + 13

6 N + 1
2N

)
(1.43)

1/9 (1.44)

2/9 (1.45)

II. DISCUSSION ON SYMMETRY

SR(p0,0) = −
γ0

p0 − Σ(p0,0)
, (2.1)

III. KINETIC THEORY IN ULTRASOFT FERMION SECTOR

(∂2gµν − ∂µ∂ν)yKν(x, y) + gS<(x, y)γµΨ(y) =

∫

d4z(Πµν(y, z)Kν(x, z) + S(x, z)δΓµ(y, z)) (3.1)

/DxK
µ(x, y) + igγνG

νµ(x, y)Ψ(x) =− i

∫

d4z(Σ(x, z)Kµ(z, y) + δΓν(x, z)G
µν(z, y)), (3.2)

(∂2gµν − ∂µ∂ν)yKν(x, y) + gS(x, y)γµΨ(y) = g < ψ̄(x)γµψ(x)ψ(y) > (3.3)

/DxK
µ(x, y) + igγνG

νµ(x, y)Ψ(x) =gγν < aν(x)ψ(x)a
µ(y) > (3.4)

(∂2gµν − ∂µ∂ν)yKν(x, y) + gS(x, y)γµΨ(y) = g < ψ̄(x)γµψ(x)ψ(y) > (3.5)

/∂xK
µ(x, y) + igγνG

νµ(x, y)Ψ(x) =gγν < aν(x)ψ(x)a
µ(y) > (3.6)

H. A. Weldon, PRD 61, 036003 (2000)

(ImΣ is small enough.)

(ReΣ is odd.)

-1

-0.5

 0

 0.5

-0.5  0  0.5

R
eY

/m

t/m

ReΣ is odd, so p0-ReΣ 
is zero at p0=0.

pole at the origin

p0/m
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M. Kitazawa, T. Kunihiro, K. Mitsutani and Y. Nemoto, PRD 77, 045034 (2008).

finite fermion mass Chiral symmetry

finite µ Charge symmetry

Ultrasoft fermion mode

Argument based on symmetry



Persistency of ultrasoft mode
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Ultrasoft mode does not exist at finite-µ, T=0.

How large µ kills the mode?
µ ~ T ?, gT ?, g2T ?

naive guess



Resummed Perturbation (T >>µ)

22

Since T >>µ, the scheme is the same as that in the case of finite-T, µ=0.

Resum thermal masses (mf, mb=O(gT))
 and decay widths (ζf , ζb=O(g4T)).

mf, ζf

mb, ζb

V. V. Lebedev and A. V. Smilga, Annals Phys. 202, 229 (1990)



Result
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The mode exists as long as T >> µ.

T

µ

Confined Phase Color Superconducting Phase

QGP Phase



Result
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Dispersion 
relation Reω＝

Decay 
width Imω=ζ=O(g4T)

Residue

5

where we have introduced ZT ≡ 8(δm2)2/(g2T 4π2) and

ΓT ≡
g2ZT

π2(δm2)2

∫ ∞

0
d|k||k|3

×
∑

s=±1

s(nF (s|k|) + nB(s|k|))ζ(|k|).
(4.9)

Thus, the fermion retarded propagator is

SR(p) # −
ZT

(p0 − ZTATµ+ iΓT )γ0 + vp · γ

= −
ZT

2

( γ0 − p̂ · γ
p0 + v|p|− ZTATµ+ iΓT

+
γ0 + p̂ · γ

p0 − v|p|− ZTATµ+ iΓT

)

.

(4.10)

From Eq. (4.10), we see that the propagator has the
pole at

p0 = ∓v|p|+ ZTATµ− iΓT . (4.11)

The residue of the pole is

ZT =
g2

72π2
, (4.12)

which is the same as the case of T &= 0, µ = 0 [8], and of
order g2.

Now we see that the pole position, Eq. (4.11), does
not break the condition of the expansion, p̃ ' g2T , since
ZTAµ ∼ g2µ ' g2T . Therefore we can suggest that the
ultrasoft mode persists at the finite chemical potential
case at least the condition T ) µ is satisfied, contrary to
the naive guess that the mode vanishes when µ ∼ g2T .

V. SUMMARY AND CONCLUDING REMARKS

We analyzed the fermion retarded propagator whose
momentum is of order or much less than g2µ, in the case
of T = 0 and µ &= 0 using the resummed perturbation in
the Yukawa model. As a result, we saw that the ultrasoft
fermion mode does not exist in that case, unlike the case
of T &= 0 and µ = 0 [7, 8]. We also suggested that the
origin of the ultrasoft fermion mode is closely related to
the charge symmetry, and that the reason why the mode
does not exist in the case of T = 0 and µ &= 0 is the ab-
sence of that symmetry. Furthermore, we analyzed the
fermion retarded propagator with the ultrasoft momen-
tum (! g2T ) in the case of T ) µ &= 0, and show that
the ultrasoft mode persists as long as that condition is
satisfied.
Though the analysis in this paper was performed in

the Yukawa model, the generalization to QED/QCD is
possible. We expect the following differences between the
present analysis and one in QED/QCD, in the case of
T ) µ: One difference is, that the damping rates of the
hard particles in those theories are anomalously large [25]
in the case of T ) µ. For this reason, it is expected
that the damping rate of the ultrasoft fermion mode in
those theories is much larger than that in the Yukawa
model, which is of order g4T ln(1/g). The other is, that
the ladder diagrams also contribute at the leading order
in QED/QCD, which is related to the gauge symmetry.
Therefore we will have to sum up all the ladder diagrams
in that case [7, 8].
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K(k,X) =2πδ(k2)(θ(k0)Λ(k, X) + θ(−k0)Λ(−k, X)) (4.21)

=
2π

2|k|
(δ(k0 − |k|)Λ(k, X) + δ(k0 + |k|)Λ(−k, X)), (4.22)

Kaµ(k,X) ≡ta2πδ(k2)(θ(k0)Λµ
+(k, X) + θ(−k0)Λµ

−(−k, X)) (4.23)

Kaµ(k,X) ≡2πδ(k2)(θ(k0)Λaµ
+ (k, X) + θ(−k0)Λaµ

− (−k, X)) (4.24)

Kaµ(k,X) ≡2πδ(k2)ta(θ(k0)Λµ
+(k, X) + θ(−k0)Λµ

−(−k, X)) (4.25)

A. higher point function

(2ik · ∂X + δm2 + 2iζfk
0)δ /K(k,X) = −2gk ·Aa(X)ta /K(k,X)|A=0

+ g2Cfγ
i/kP ij(k)(N(k0) + n(k0))ρ0(k)

∫

d4k′

(2π)4
γνS(k + k′)γjδKν(k

′, X).
(4.26)

(2iv · ∂X + δm2/|k|+ 2iζ)δ/Λ±(k,X)− 2gk · Aa(X)ta/Λ±(k,X)|A=0 (4.27)

= −g2/v(N(|k|) + n(|k|))CfγiP
ij
T (v)

∑

s=±

∫

d3k′

(2π)3
1

2|k′|

svαγj ± v′jγ
α

|k||k′|v · v′
δΛsα(k

′, X) (4.28)

Λµ
s (k,X) = Λµ

s (k,X)|A=0 + δΛµ
s (k,X) (4.29)

V. FINITE µ

g2
∫

d4k

(2π)4
2πθ(k0)δ(k2)n(k0)

/k

2p · k − p2
p→0
−−−→ ∞ (5.1)

g2µ

36π2
(5.2)

−
p

3
+

g2µ

36π2
(5.3)

This term does not break the expansion 
condition ( p<<g2T ) when T >> µ.



Summary

•We showed that ultrasoft fermion mode does not exist 
when µ is large.

•We showed that the mode exists as long as T >> µ.

•We obtained the expressions of the dispersion relation, 
decay width, and the residue for T >> µ.

•We discussed the origin of the mode from the point of 
view of the chiral symmetry and charge symmetry.
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Back Up

26



Resummed Perturbation (finite-T, µ=0)
(1) Resum the thermal masses (mf, mb=O(gT)) and 
decay widths (ζf , ζb=O(g2T) or O(g4T)).

27

mf, ζf

mb, ζb

δm2=m2b-m2f, ζ= ζf +ζb

1

Gm(p) =
1

/p−mf
(0.1)

Dµν
m (p) =

Pµν
T (p)

p2 −m2
b

(0.2)

Gm(p) =
/p

p2 −m2
f + 2ip0ζf

(0.3)

Dµν
m (p) =

Pµν
T (p)

p2 −m2
b + 2ip0ζb

(0.4)

Dm(p) =
1

p2 −m2
b + 2ip0ζb

(0.5)

(0.6)

G(p) =
1

/p
(0.7)

Dµν(p) =
gµν − pµpν/p2

p2
(0.8)

G(p) =
/p

p2
(0.9)

D(p) =
1

p2
(0.10)

g2
/k

k2(k − p)2
= g2

(

1

(k − p)2
−

1

k2

)

/k

2p · k − p2
p→0
−−−→ ∞ (0.11)

g2
/k

k2(k − p)2
= g2

(

1

(k − p)2
−

1

k2

)

/k

2p · k − p2
p→0
−−−→ ∞ (0.12)

g2

p · k
(0.13)

(

g2

p · k

)2

(0.14)

g2

2p · k + δm2 + 2iζk0
= O(g0) (0.15)

(

g2

2p · k + δm2 + 2iζk0

)2

= O(g0) (0.16)

g2
(

1

(k − p)2
−

1

k2

)

/k

2p · k+δm2 + 2iζk0
p→0
−−−→ O(g0) (0.17)

g2
/k

2p · k+δm2 + 2iζk0
p→0
−−−→ O(g0) (0.18)

p2 −Π(p) =0 (0.19)

(/p− Σ(p))2 =0 (0.20)

V. V. Lebedev and A. V. Smilga, Annals Phys. 202, 229 (1990)

→Pinch singularity is regularized.

Yukawa model、QED (photon)QED (electron)、QCD



(#vertex)/(#red line)=1
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Resummed Perturbation (finite-T, µ=0)
V. V. Lebedev and A. V. Smilga, Annals Phys. 202, 229 (1990)

The singularity is regularized, but all the ladder diagrams contribute 
at the same order.

(In the case of QED/QCD)

(2) Sum up the Ladder diagrams.
Adopt the following vertex:

g2×1/g2=g0 g4×1/g4=g0 g6×1/g6=g0
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Σ(p)=

(1), (2)

Resummed Perturbation (finite-T, µ=0)
V. V. Lebedev and A. V. Smilga, Annals Phys. 202, 229 (1990)

This diagram contains all the 
contribution at leading order (O(p/g2)).



Interpretation of Plasmino
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Novel Collective Excitations and the Quasi-Particle Picture of Quarks 121

Fig. 13. Typical peak position of the spectral functions in the case of level mixing at the origin
(left) and away from the origin (right). The long dashed curves show that the strength of the
spectrum is becoming weaker. The solid line represents the free quark and antiquark dispersion
relations, and the dotted line the antiquark hole and quark hole dispersion relations. Level
repulsion takes place at the intersection point of these two lines.

a hole state in the thermally distributed anti-quark states: Q → q̄h + b. Such a
process is called resonant scattering.20) Note that the most probable process for
finite T involves the lowest energy state of the boson, i.e., a rest boson with a energy
m. The energy conservation law in the most probable case for the above process is
ωQ(p) + ωq̄(−p) = m, or equivalently,

ωQ(p) = m − ωq̄(−p). (3.18)

This equation actually represents the energy-momentum relation for the particles
involved in the state mixing. Thus we see that the physical energy spectrum is
obtained as a result of the level repulsion between the energies ωq(p) = |p| and
m − ωq̄(−p) = m− |p| in the perturbative picture. This situation is depicted in the
upper-right part of the right panel in Fig. 13.

Similarly, the process (III) in Fig. 3 includes the process q → Q + b, and the
energy-momentum conservation law for this process for the most probable case is

−ωq(p) = −m + ωQ(p). (3.19)

Thus, the physical energy spectrum is obtained as a result of the level repulsion
between the energies −|p| and −m + |p|. This situation is also depicted in the
lower-right part of the right panel in Fig. 13.

We thus find that at temperatures satisfying T/m ∼ 1, owing to the finite boson
mass, the level repulsions occur far from the origin, and then the quasi-dispersion
relations are bent twice, or two gap-like structures in the quark spectrum are formed
at positive and negative energies, as shown in the right panel of Fig. 13.

It is interesting to consider the high temperature limit, T $ m, or m/T ∼ 0. In
this case, the effect of the boson mass can be ignored, and the resonant scattering
occurs only once at the origin (ω = |p| = 0), since the energy levels which are to be
repelled cross only there. Then the situation becomes that represented in the left
panel of Fig. 13.

level repulsion between anti-
fermion and hole with boson

48 COLLECTIVE FERMIONIC EXCITATIONS IN SYSTEMS WITH. . .

Only spinors with opposite chirality contribute in the coupling to a scalar field. From these relations, one immedi-
ately deduces the form of the eigenstates

l@ p)+,~ = v'z+ »,p+a). &b-~,p+~&k lOp)
2cdyQ cd~ —p cos8 )

~Ap~kkl@"p)+, ~ = v'z+ d)„p+a) g», p+k~g lc'p)
2ldtt„.A —4)~ —p cos8 )

(42)

where ~@ p) (~@" )) is the eigenstate corresponding to
s = +1 (s = —1, the subscript + (—) refers to the
normal (abnormal) branch, and zy is a normalization
constant. The norm of the states can be calculated di-
rectly from Eq. (42) by replacing the sum over k by
an integral, as in Eq. (35), and noting that

cos(8/2) and Pt&- P z&
——sin(8/2). One then obtains

z~ = (m+2 —p2)/2M', which coincides with the residues
given by Eq. (18). It may also be verified by an explicit
calculation, using the results of Sec. II, that all the states
are orthogonal.
One sees on Eqs. (42) that, as a result of the interac-

tions, the "bare" hole bg p~C'p) and the "bare" positron
d& ~c'p) couple independently to a coherent superpo-
sition of hole—photon states. There is no direct mixing
between the hole and the positron states. Such a mixing
does in fact occur when m g 0 and p g 0, as we shall
see later, but even then, this is not a dominant feature.
The basic mechanism at work is best understood by con-
centrating on what happens to one of the single-particle
states, the hole state for example, as the interaction is
switched on. This is illustrated in Fig. 9 where on the
left-hand side is drawn the dispersion relation w(p) for

0E
3

1 2 3 0
p/rn

FIG. 9. The dispersion relation for the hole excitation.
Left-hand side: no interaction. Right-hand side: with inter-
action. The shaded area represents the most important part
of the continuum of hole-photon states to which the hole cou-
ples.

the hole state in absence of interaction, while in the right-
hand side is the split dispersion relation u~(p) which re-
sults when the interaction is taken into account. The
shaded area represents the phase space occupied by the
continuum of hole-photon states to which the hole cou-
ples. We have represented only the dominant part of the
density of states. As we have seen in Sec. III A, the den-
sity of state is nonvanishing in the region p & ~ & t.~, but
it does vanish as ~ + e~. As it is clear from this figure,
this coupling to the continuum shifts some of the single
particle strength from the positive energy, where it nor-
mally belongs, to the negative energies where it appears
as an "abnormal" branch. In the limit where m, p (( p, ,
the strength becomes equally distributed among the two
branches. The branches corresponding to the positrons
are symmetrical to those just described for the hole. The
interpretation of the two branches with positive cu is
then clear. The normal branch is that part of the elec-
tron strength which is pushed up by the interaction with
the continuum; the abnormal branch is that part of the
positron strength which is pushed up to positive energies
by the same interactions. We note that the energy shift,
being of order gp, rather than g p, , is nonperturbative.
Most of the electrons in the Fermi sea contribute to this
phenomenon, and indeed the structure of the states just
described has many features of collective excitations in
many-body systems.
We now discuss some properties of the spectrum in

the light of these remarks. When m = 0 and p ~ 0,
u ~ M [see Eq. (15)] and z~ —+ 1/2 [see Eq. (18)] and
all four states have a similar structure; i.e. , the single
particle strength is equally distributed among the four of
them. When p increases, the abnormal branch quickly
becomes ~ = —p with a residue z —+ 0, while the nor-
mal branch goes over to the usual fermion dispersion re-
lation with z+ —b l. At the same time, the relative weight
of the hole-photon component (1 —z~)/z~ decreases for
the normal branch, but increases for the abnormal one.
As revealed by a simple analysis, when p & M, only the
states at the edges of the hole-photon continuum con-
tribute to the abnormal branches. These states are of
the form» p+gak~Ctp), with p and k antiparallel when

—p, and with p and k parallel when w p.
The two states (42), i.e., the dressed hole and the

dressed positron, have the same fermionic charge —1 with
respect to the unperturbed ground state. This may be
verified explicitly by taking the expectation values of the
operator Q = f: rbtrb: d x = P& (ba bar —d& da,r),

level repulsion between hole and 
hole with boson

No mixing between hole and anti-
fermion!!



Hard scale (p~T, µ)
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T -1, µ -1 

T -1, µ -1 

In hard scale, the medium effect is small since the scale is 
the same as the inter-particle distance.



Soft scale (p~gT, gµ)
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In the soft scale, we consider the large distance 
compared with the inter-particle distance, so the 

medium effect is not negligible.

(gT)-1, (gµ) -1

T -1, µ -1 


